Rainfall time series forecasting based on Modular RBF Neural Network model coupled with SSA and PLS

نویسندگان

  • Jiansheng Wu Yu
  • Jimin Yu
چکیده

Accurate forecast of rainfall has been one of the most important issues in hydrological research. Due to rainfall forecasting involves a rather complex nonlinear data pattern; there are lots of novel forecasting approaches to improve the forecasting accuracy. In this paper, a new approach using the Modular Radial Basis Function Neural Network (M–RBF–NN) technique is presented to improve rainfall forecasting performance coupled with appropriate data–preprocessing techniques by Singular Spectrum Analysis (SSA) and Partial Least Square (PLS) regression. In the process of modular modeling, SSA is applied for the time series extraction of complex trends and structure finding. In the second stage, the data set is divided into different training sets by Bagging and Boosting technology. In the third stage, the modular RBF–NN predictors are produced by a different kernel function. In the fourth stage, PLS technology is used to choose the appropriate number of neural network ensemble members. In the final stage, least squares support vector regression is used for ensemble of the M–RBF–NN to prediction purpose. The developed RBF–NN model is being applied for real time rainfall forecasting and flood management in Liuzhou, Guangxi. Aimed at providing forecasts in a near real time schedule, different network types were tested with the same input information. Additionally, forecasts by M–RBF–NN model were compared to the convenient approach. Results show that the predictions made using the M–RBF–NN approach are consistently better than those obtained using the other method presented in this study in terms of the same measurements. Sensitivity analysis indicated that the proposed M-RBF-NN technique provides a promising alternative to rainfall prediction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks

In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...

متن کامل

Daily river flow forecasting in a semi-arid region using twodatadriven

Rainfall-runoff relationship is very important in many fields of hydrology such as water supply and water resourcemanagement and there are many models in this field. Among these models, the Artificial Neural Network (ANN) wasfound suitable for processing rainfall-runoff and opened various approaches in hydrological modeling. In addition,ANNs are quick and flexible approaches which provide very ...

متن کامل

Forecasting Cohesionless Soil Highway Slope Displacement Using Modular Neural Network

The highway slope failures are triggered by the rainfall, namely, to create the disaster. However, forecasting the failure of highway slop is difficult because of nonlinear time dependency and seasonal effects, which affect the slope displacements. Starting from the artificial neural networks ANNs since the mid-1990s, an effective means is suggested to judge the stability of slope by forecastin...

متن کامل

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

Forecasting and Sensitivity Analysis of Monthly Evaporation from Siah Bisheh Dam Reservoir using Artificial neural Networks combined with Genetic Algorithm

Evaporation process, the main component of the water cycle in nature, is essential in agricultural studies, hydrology and meteorology, the operation of reservoirs, irrigation and drainage systems, irrigation scheduling and management of water resources. Various methods have been presented for estimating evaporation from free surface including water budget method, evaporation from pan and experi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013